
Automatic parallelisation from high-level abstractions for
mesh-based simulations

Gábor Dániel Balogh, Dr. István Reguly,
Prof. Mike Giles, Dr. Gihan Mudalige

Pázmány Péter Catholic University
Faculty of Information Technology and Bionics

June 22, 2017

OPS/OP2 June 22, 2017 1 / 24

Outline

Outline

Motivation

Structured and unstructured grids

OPS/OP2
Abstraction
API

Optimizations performed inside OP2 and OPS
Data layout
Checkpointing

Performance

OPS/OP2 June 22, 2017 2 / 24

Motivation

Future proofing parallel HPC applications

Hardware is rapidly changing with ambitions to overcome exascale
challenges

There is considerable uncertainty about which platform to target
Not clear which architectural approach is likely to “win” in the
long-term
Not even clear in the short-term which platform is best for each
application

Increasingly complex programming skills set needed to extract best
performance for your workload on the newest architectures.

Need a lot of platform specific knowledge
Cannot be re-coding applications for each “new” type of architecture or
parallel system.

OPS/OP2 June 22, 2017 3 / 24

Motivation

One approach to develop future proof HPC applications is the use of
domain specific high-level abstractions (HLAs)

Provide the application developer with a
domain specific abstraction

To declare the problem to be computed
Without specifying its implementation
Use domain specific constructs in the
declaration

Create a lower implementation level
To apply automated techniques for translating
the specification to different implementations
Target different hardware and software
platforms
Exploit domain knowledge for better
optimisations on each hardware system

OPS/OP2 June 22, 2017 4 / 24

Structured and unstructured grids

Structured and unstructured grids

Structured grids
Logical indexing with implicit connectivity
Easy to parallelize, including on GPUs

Unstructured grids
A collection of nodes, edges, etc., with explicit connections - e.g.
mapping tables define connections from edges to nodes
Much harder to parallelize
For many interesting cases, unstructured meshes are the only tool
capable of delivering correct results

OPS/OP2 June 22, 2017 5 / 24

OPS/OP2 abstraction

OP2/OPS

Open Source project

OP2 based on OPlus (Oxford Parallel Library for Unstructured
Solvers), developed for CFD codes on distributed memory clusters

OPS (Oxford Parallel Structured software) based on OP2, for
structured mesh applications

Support application codes written in C++ or FORTRAN

Looks like a conventional library, but uses code transformations
(source to source translator) to generate parallel codes

OPS/OP2 June 22, 2017 6 / 24

OPS/OP2 abstraction

OP2 Abstraction

Sets (e.g. nodes, edges, faces)
Datasets on sets (e.g. flow variables)
Mappings (e.g. from edges to nodes)

Parallel loops
Operate over all members of one set
Datasets accessed at most one level of indirection
User specifies how data is used (e.g. Read-only, write-only, increment,
read/write)

Restrictions
Set elements can be processed in any order, doesn’t affect results
within machine precision
Static sets and mappings (no dynamic grid adaptation)

OPS/OP2 June 22, 2017 7 / 24

OPS/OP2 abstraction

OPS Abstraction

Blocks
Datasets on blocks
Stencils
Parallel loops

Operate over elements of a block
Accessing data through stencils,
describing type of access

OPS/OP2 June 22, 2017 8 / 24

OPS/OP2 abstraction Example

OPS/OP2 June 22, 2017 9 / 24

OPS/OP2 abstraction Example

OP2 declarations

int nedges = 12; int ncells = 9;

int edge_to_cell [24] = {0,1, 1,2, 0,3, 1,4, 2,5,
3,4, 4,5, 3,6, 4,7, 5,8, 6,7, 7 ,8};

op_set edges = op_decl_set (nedges , "edges");
op_set cells = op_decl_set (ncells , "cells");
op_map pecell =
op_decl_map (edges , cells , 2, edge_to_cell ,

" edge_to_cell_map ");

op_dat dcells =
op_decl_dat (cells , 1, " double ", cell_data ,

" data_on_cells ");

OPS/OP2 June 22, 2017 10 / 24

OPS/OP2 abstraction Example

OP2 declarations

double cell_data [9] = {0.128 , 0.345 , 0.224 , 0.118 ,
0.246 , 0.324 , 0.112 , 0.928 , 0.237};

double edge_data [12] = {3.3 , 2.1, 7.4, 5.5, 7.6,
3.4, 10.5 , 9.9, 8.9, 6.4, 4.4, 3.6};

op_dat dcells =
op_decl_dat (cells , 1, " double ", cell_data ,

" data_on_cells ");
op_dat dedges =
op_decl_set (edges , 1, " double ",edge_data ,

" data_on_edges ");

OPS/OP2 June 22, 2017 11 / 24

OPS/OP2 abstraction Example

OP2 loop over edges

void res(double * edge ,
double * cell0 ,
double * cell1){

*cell0 += *edge;
*cell1 += *edge;

}

op_par_loop (res ," residual_calculation ", edges ,
op_arg (dedges , -1, OP ID, 1, " double ", OP READ,
op_arg (dcells , 0, pecell , 1, " double ", OP_INC),
op_arg (dcells , 1, pecell , 1, " double ", OP_INC));

OPS/OP2 June 22, 2017 12 / 24

OPS/OP2 abstraction Generatin platform specific executables

OPS/OP2 June 22, 2017 13 / 24

Automatic optimizations

Array-of-structs (AoS) storage preferred to struct-of-arrays (SoA)
Better cache hits for indirect addressing
Data transfers on GPU still largely ”coalesced”

a b c d a b c d a b c d a b c d
(a) Array-of-Structures (AoS)

a a a a b b b b c c c c d d d d
(b) Structure-of-Arrays (SoA)

Distributed memory parallelization using MPI makes use of
non-blocking communications for overlapping computation with
communications

First compute set elements that does not require referring halo
elements while halo elements are fetched from corresponding MPI
neighbour
On GPU clusters halos needs to be copied each time on to the GPU
global memory from host via the PCIe bus

Tracking changes of data to minimize the number of MPI messages

OPS/OP2 June 22, 2017 14 / 24

Automatic optimizations

Abstraction makes it possible to implement automatic check-pointing
Save data every X minutes, if a crash happens, read back and continue

We can implement lazy execution
Don’t have to execute a loop immediately, unless it has a reduction
that is used afterwards
Queue up a sequence of loops to be executed
Data dependency analysis at run-time

Find the optimum point for check-pointing
Communication avoidance

OPS/OP2 June 22, 2017 15 / 24

Performance OPS

Cloverleaf

Mini-app - Representative, but lightweight
application-

6K LoC
2D/3D Structured Hydrodynamics
Explicit solution to the compressible Euler
equations
Single material
Finite volume predictor/corrector
Lagrangian step followed by an adaptive
remap

OPS/OP2 June 22, 2017 16 / 24

Performance OPS

Single Node Performance CPU (2x8-core Intel CPU) (3840
x 3840 mesh, 87 iterations)

32 OMP 32 MPI 2OMPx16MPI OpenCL

OPS 45.92 45.55 45.82 63.35

Original 57.39 44.60 44.22 61.54

0

10

20

30

40

50

60

70

Ti
m

e
 (

se
co

n
d

s)

OPS/OP2 June 22, 2017 17 / 24

Performance OPS

Single Node Performance GPU (K20) (3840 x 3840 mesh,
87 iterations)

CUDA OpenCL OpenACC

OPS 15.01 16.27 19.82

Original 14.14 16.19 21.67

0

10

20

30

40

50

60

70

Ti
m

e
 (

se
co

n
d

s)

OPS/OP2 June 22, 2017 18 / 24

Performance OPS

Performance Scaling (Titan)

Strong Scaling
15360 x 15360 mesh
(87 iterations)

0.3

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128 512 2048 8192

Ti
m

e
 (

se
co

n
d

s)

Nodes

Original (MPI)
OPS (MPI)
Original (MPI+CUDA)
OPS (MPI+CUDA)

Weak Scaling
3840 x 3840 mesh per node
(87 iterations)

0

50

100

150

200

1 8 64 512 4096

Ti
m

e
 (

se
co

n
d

s)

Nodes

Original (MPI)
OPS (MPI)
Original (MPI+CUDA)
OPS (MPI+CUDA)

OPS/OP2 June 22, 2017 19 / 24

Performance OP2

Rolls Royce - Hydra

Hydra is an unstructured mesh production CFD
application used at Rolls-Royce for simulating
turbo-machinery of Aircraft engines
Production code is written in FORTRAN 77

50K lines with 1000 parallel loops
Originally using the OPlus library (predecessor
of OP2)
For real production problems, simulation time
is in the order of hours, up to days for large
calculations

OPS/OP2 June 22, 2017 20 / 24

Performance OP2

Hydra Oplus - OP2 performance

OPS/OP2 June 22, 2017 21 / 24

Performance OP2

Hydra performance scaling

0.25

0.5

1

2

4

8

16

32

1 2 4 8 16 32 64 128

R
un

tim
e

(S
ec

on
ds

)

Nodes

OPlus
OP2 MPI (RCB)
OP2 MPI+OMP (RCB)
OP2 MPI (PTScotch)
OP2 MPI+OMP (PTScotch)
OP2 MPI+CUDA (PTScotch)

OPS/OP2 June 22, 2017 22 / 24

Performance Other apps

Other apps with OP2 and OPS

OP2
Airfoil mini-app

non-linear 2D inviscid airfoil
code
solves 2D Euler equations

Volna
numerical modelling of
tsunami waves

OPS
Tealeaf mini-app

linear heat conduction
equation
solves a sparse system of
linear equations, without
explicitly forming the sparse
matrix

OpenSBLI
compressible navier-stokes
solver

OPS/OP2 June 22, 2017 23 / 24

Summary

Summary

OP2/OPS abstraction facilitate the development of application for
parallel execution

Nearly optimal performance
but the optimization is done automatically, not by the developer

Automatic support for different parallelization models and features

Future proof maintainable application source
Support future parallel systems based on the back-ends

OPS/OP2 June 22, 2017 24 / 24

	Outline
	Motivation
	Structured and unstructured grids
	OPS/OP2 abstraction
	Example
	Generatin platform specific executables

	Automatic optimizations
	Performance
	OPS
	OP2
	Other apps

	Summary

